Cubic polynomial patches through geodesics

نویسنده

  • Marco Paluszny
چکیده

We consider patches that contain any given 3D polynomial curve as a pregeodesic (i.e. geodesic up to reparametrization). A curve is a pregeodesic if and only if its rectifying plane coincides with the tangent plane to the surface, we use this fact to construct ruled cubic patches through pregeodesics and bicubic patches through pairs of pregeodesics. We also discuss the G1 connection of (1, k) patches with abutting pregeodesics. c © 2007 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial Patches through Geodesics

The main goal of this paper is to exhibit a simple method to create surface patches that contain given curves as geodesics, when reparameterized by arclength. The method is based on the observation that a curve which lies on a surface is a geodesic (up to parametrization) if and only if its tangent and acceleration vectors are coplanar with the surface normal along the curve. This observation r...

متن کامل

Construction of Bézier surface patches with Bézier curves as geodesic boundaries

Given four polynomial or rational Bézier curves defining a curvilinear rectangle, we consider the problem of constructing polynomial or rational tensor–product Bézier patches bounded by these curves, such that they are geodesics of the constructed surface. The existence conditions and interpolation scheme, developed in a general context in earlier studies, are adapted herein to ensure that the ...

متن کامل

Free Form Surface Design with A-Patches·

We present a sufficient criterion for the Bernstein-Bezier (BB) form of a trivariate polynomial within a tetrahedron, such that the real zero contour of the polynomial defines a smooth and single sheeted algebraic surface patch. We call this an A-patch. We present algorithms to build a mesh of cubic A-patches to interpolate a given set of scattered point data in three dimensions, respecting the...

متن کامل

Modeling with A-Patches

We present a sufficient criterion for the Bernstein-Bezier (BB) form of a trivariate polynomial within a tetrahedron, such that the real zero contour of the polynomial defines a smooth and single sheeted algebraic surface patch. We call this an A-patch. We present algorithms to build a mesh of cubic A-patches to interpolate a given set of scattered point data in three dimensions, respecting the...

متن کامل

Construction of Cubic Triangular Patches with C Continuity around a Corner

This paper presents a novel approach for constructing a piecewise triangular cubic polynomial surface with C continuity around a common corner vertex. A C continuity condition between two cubic triangular patches is first derived using mixed directional derivatives. An approach for constructing a surface with C continuity around a corner is then developed. Our approach is easy and fast with the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer-Aided Design

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2008